Ruído

Objectivos

Classificação dos Sons

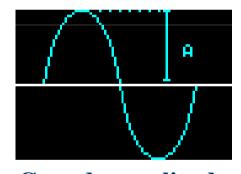
- Agradáveis
- Úteis
- · Incómodos / Ruído

O som como uma Onda

O som propaga-se com um movimento ondulatório, no qual as cristas das ondas são substituídas por compressões e

depressões invisíveis.

Características do Som


Intensidade

Altura

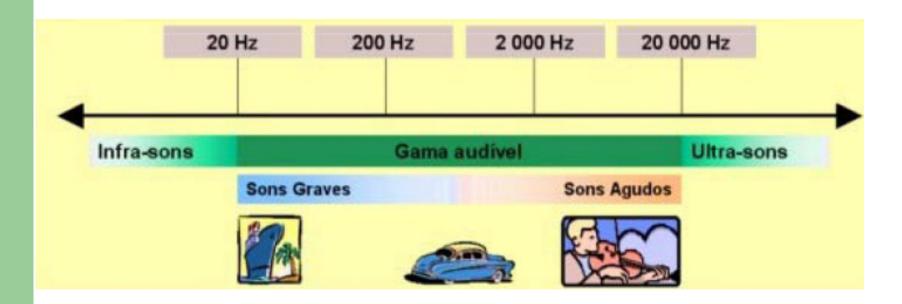
Timbre

Intensidade

Quantidade de energia transportada (W/m2), que permite ao ouvido diferenciar os sons fracos dos sons fortes.

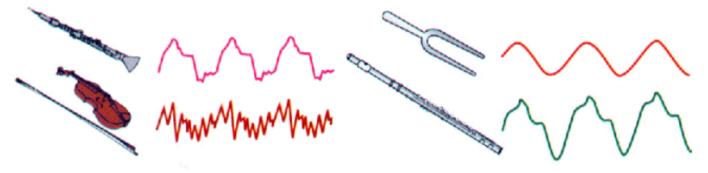
Grande amplitude (som forte)

Pequena amplitude (som fraco)


Altura

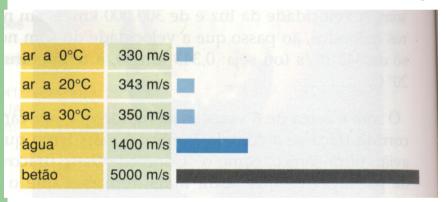
É a qualidade que permite ao ouvido diferenciar sons graves de sons agudos.

Agudo => maior frequência (ω)


Grave => menor frequência (ω)

Altura

Timbre


Timbre : É a qualidade que permite ao ouvido diferenciar sons da mesma altura e intensidade emitidas por fontes diferentes. (A mesma nota em instrumentos diferentes soa de modo diferente.)

Sons com a mesma frequência mas harmónicos diferentes.

Velocidade de Propagação

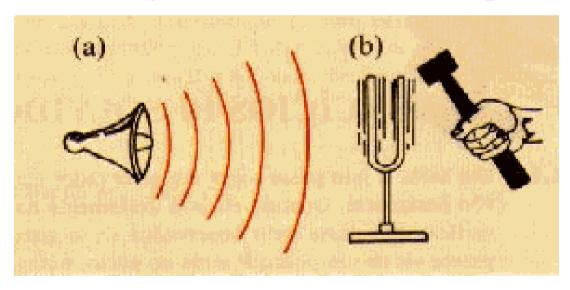
Depende do meio de propagação

$$v = \sqrt{\frac{\gamma RT}{M}}$$

$$V_{solidos} > V_{liquidos} > V_{gases}$$

v-velocidade do som num gás

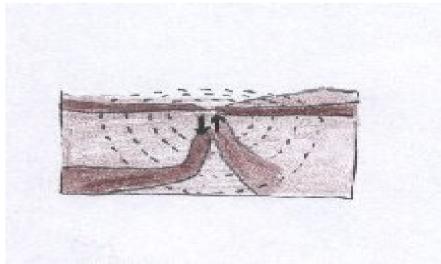
 γ - constante dependente do gás (1,4 para o ar)


R – constante universal dos gases (8,314 J/mol.K)

T – temperatura absoluta (K)

M – massa molecular do gás (29x10⁻³ Kg/mol.)

Fontes Sonoras


Qualquer corpo elástico capaz de vibrar pode produzir um som e nesse caso, recebe o nome de fonte sonora, alguns exemplos são o diafragma de alto-falante e o diapasão.

Sensibilidade Auditiva

Infra-som: Situam-se abaixo dos 20 Hz, como exemplo temos os movimentos sísmicos que dão origem a ondas mecânicas. Mas a frequência desses sons é demasiado baixa para que seja audível. Essas ondas são registadas pelos

sismógrafos.

Sensibilidade Auditiva

Ultra-sons: estão situados acima dos 20 000 Hz, as vibrações mecânicas têm um campo muito amplo de frequências, o ecometro ou a sonda acústica são exemplos de como a reflexão dos ultra-sons serve para descobrir objectos

não visíveis.

Sensibilidade Auditiva

O ouvido humano não tem a mesma sensibilidade a todas as frequências, sendo mais sensível à gama de frequências compreendidas entre 2 e 5 kHz, e menos sensível para as restantes gamas de frequências.

Por outro lado é conhecido que o eventual dano sofrido pelo indivíduo está relacionado com a sensibilidade do seu ouvido.

Tipos de Fontes Sonoras

Fontes Pontuais

Fontes Lineares

Fontes Planas

Fontes Pontuais

Uma fonte diz-se pontual se as suas dimensões forem pequenas quando comparadas com a distância a que se encontra do receptor.

Exemplo de fontes pontuais: aeronaves, uma fábrica, um automóvel isolado, um alto-falante no alto de um mastro.

Fontes Lineares

Emitem som de uma forma contínua ao longo de uma linha, como no caso de um fluído em regime turbulento a passar no interior de um tubo.


Exemplo de fontes Lineares: O caso de uma auto-estrada com trânsito intenso ou de uma linha férrea.

Fontes Planares

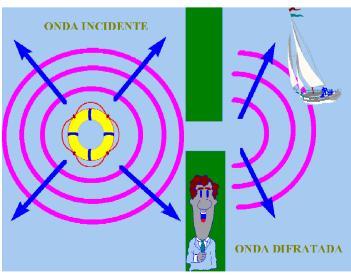
Uma onda plana tem propriedades acústicas (pressão, velocidade, potência, etc) iguais, em amplitude e fase, em planos perpendiculares à sua direcção de propagação. Podem ocorrer em tubos ou condutas em que as dimensões transversais são pequenas quando comparadas com o comprimento de onda do som.

Reflexão

Eco - Consiste na repetição de sons emitidos diante um obstáculo, por exemplo uma parede, uma montanha, entre outros, ou seja resulta de reflexão do som.

Refracção

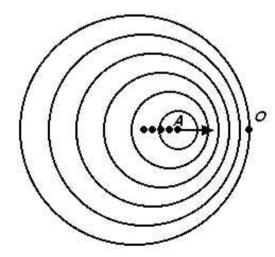
Refracção - Fenómeno que ocorre quando uma onda passa de um meio para outro onde se propaga com velocidade diferente.


Quando as ondas sonoras mudam de meio de propagação, mudam a velocidade, podendo mudar de

direcção.

Difracção

Difracção - as ondas sonoras também podem contornar obstáculos. A difracção das ondas sonoras só é possível porque estas ondas estão constantemente a espalhar-se em todas as direcções. Se assim não fosse, não era possível ouvir uma pessoa que estivesse na sala ao lado


ou a trás de uma esquina.

Efeito de Doppler

Quando uma fonte sonora ou o seu receptor se encontram em movimento, ocorre uma alteração na frequência percebida do som que é denominada *Efeito Doppler*.

Reverberação

Reverberação - consiste na chegada de ondas sonoras provenientes de uma mesma fonte em tempos diferentes, seguindo percursos diferentes, mesmo depois da fonte que lhe deu origem ser interrompida.

Tempo de reverberação - tempo necessário para que a energia sonora decaia de um milhar de vezes em relação à sua energia inicial, isto é, o tempo necessário para o nível em decibéis decair de 60 dB e expressa a capacidade de absorção do ambiente.

Unidade do Som

DECIBEL

É o logaritmo da razão entre o valor medido e um valor de referência padronizado e corresponde à mais pequena variação da pressão sonora que um ouvido humano normal pode distinguir nas condições normais de audição.

Decibéis – dB (em homenagem a Alexandre Bell, inventor de telefone (1847-1922))

Unidade do Som

Nível de pressão sonora,

Lp [dB]:
$$Lp = 10 \log (p/p_0)^2$$

 p – valor eficaz da pressão sonora sem protecção, em pascais, a que está sujeito um indivíduo

 p_0 – pressão de referência (2x10⁻⁵ pascal = 20 μ Pa)

Nível sonoro ponderado A, Lp_{Δ} [dB (A)]:

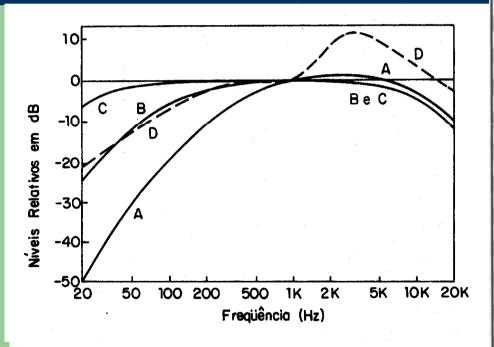
$$Lp_A = 10 \log (p_A/p_0)^2$$

 p_A – valor eficaz da pressão sonora ponderada A, em pascais, a que está sujeito um indivíduo

 p_0 – pressão de referência (2x10⁻⁵ pascal = 20 μ Pa)

Escalas – A, B, C e D

Existem quatro escalas de ponderação (A, B, C e D) para além da linear, isto é, da que não tem qualquer correcção.


As escalas A e B, actuam de forma a fornecer medidas dos níveis de pressão sonora que se aproxima da forma como o ouvido humano se apercebe desses níveis. Das duas escalas utiliza-se mais a A, sendo a B raramente utilizada.

A escala C, é essencialmente linear, embora com pequenas atenuações para as baixas e as altas frequências.

A escala D, muito particular, é usada apenas na medição de níveis de ruído associados à aviação.

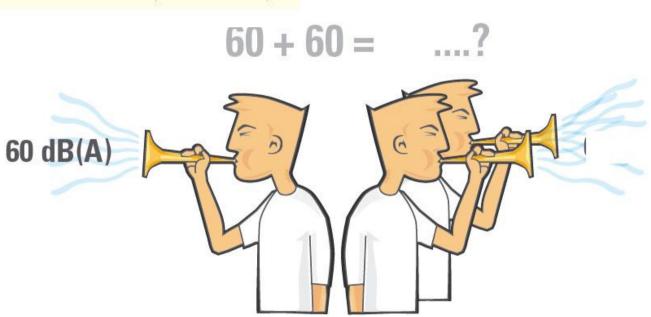
Curvas de Atenuação da Percepção

Auditiva

Freqüência (Hz)	Curva A dB(A)	Curva B dB(B)	Curva C dB(C)
10	-70,4	-38,2	-14,3
12,5	-63,4	-33,2	-11,2
16	-56,7	-28,5	-8,5
20	-50,5	-24,2	-6,2
25	-44,7	-20,4	-4,4
31,5	-39,4	-17,1	-3,0
40	-34,6	-14,2	-2,0
50	-30,2	-11,6	-1,3
63	-26,2	-9,3	-0,8
80	-22,5	-7,4	-0,5
100	-19,1	-5,6	-0,3
125	-16,1	-4.2	-0,2
160	-13,4	-3,0	-0,1
200	-10,9	-2,0	0,0
250	-8,6	-1,3	-0,0
315	-6,6	-0,8	0,0
400	-4,8	-0,5	0,0
500	-3,2	-0,3	0,0
630	-1,9	-0,1	0,0
800	-0,8	0,0	0.0
1000	0,0	0,0	0,0
1250	0,6	0.0	0,0
1600	1,0	0,0	-0,1
2000	1,2	-0,1	-0,2
2500	1,3	-0,2	-0,3
3150	1,2	-0,4	-0,5
4000	1,0	-0,7	-0,8
5000	0,5	:1,2	-1,3
6300	-0,1	-1,9	-2,0
8000	-1,1	-2,9	-3,0
10000	-2,5	-4,3	-4,4
12500	-4,3	-6,1	-6,2
16000	-6,6	-8,4	-8,5
20000	-9,3	-11,1	-11,2

Nível sonoro contínuo equivalente

Nível sonoro contínuo equivalente, L_{AeqT} , ponderada A de um ruído num intervalo de tempo T, [dB (A)]:


$$L_{Aeq,T} = 10 \log_{10} \left\{ \frac{1}{T} \int_{t_1}^{t_2} \frac{[p_A(t)]^2}{[p_0]^2} dt \right\}$$

Em que:

 $T = t_2 - t_1$ – tempo de exposição de um trabalhador ao ruído $p_A(t)$ – pressão instantânea ponderada A, expressa em pascais, a que o colaborador está exposto, com ar à pressão atmosférica p_0 – pressão de referência (2x10-5 pascal = 20 μPa)

Soma e Subtracção de dB

$$Lp_1 + Lp_2 = 10 \times \log_{10} \left(10^{\frac{Lp_1}{10}} + 10^{\frac{Lp_2}{10}} \right)$$

Média de N Amostras

$$LAeq, N = 10Log \left[\frac{1}{N} \sum_{i=1}^{n} 10^{(LAeq, ni)/10} \right]$$